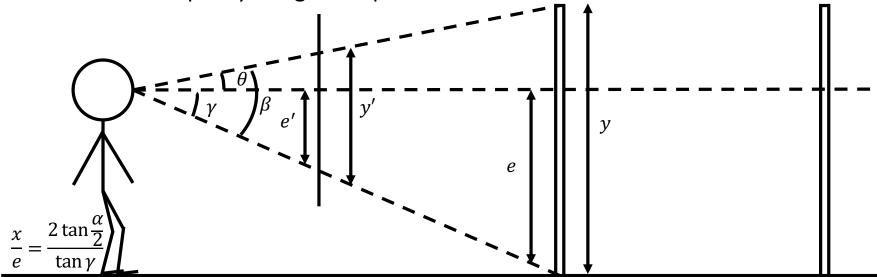
Reaches-to-Grasping

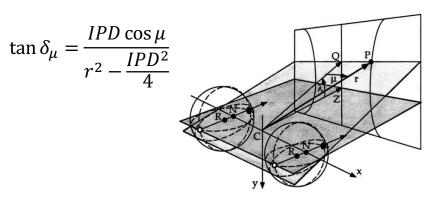
Michael Wang

What you should get out of this session

- What type of units do we need when we talk about perception-action coupling? Why do we need them? How do we connect them?
- (What are the two types of scaling relationship in action analysis?)
- (What is one important lesson do we learn from the second type of scaling relationship?)

Last time - affordances


- Affordances are
 - Properties of surfaces, objects, and events
 - <u>Relational</u> relationship between properties of the environment and properties of animals.
 - <u>Functional</u> about action capabilities, what actions are afforded
 - <u>Perceptible</u> one can directly perceive visual information that specifies affordances. They are not something to be found in the dictionary. They must be discovered.
 - <u>Real</u> affordances are always there. They are not phenomenal (i.e. only exist when you see the environment).


Question remains

- How do we know the relationship between animal and the environment?
 - Optical information is inherently angular
 - There are no linear extents in optical patterns that can be described as being metric (e.g., meters or feet).

We still have our body

- Remember, we always have our body
- Linear bodily extents are an intrinsic part of the viewing geometry
 - Eye-height scaling: elevation angle specifies distance in eye-height units
 - Binocular disparity: vergence specifies distance in IPD units

Units

- Measurement units that we are familiar with
 - Centimeters, meters etc.
 - Inch, feet, etc.
 - (These units are human constructs anyways, like time...)
- Instead, try to think about measurement units that are intrinsic to human perception
 - IPD
 - Eye-height

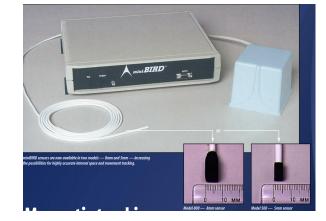
Affordances vs. Effectivity

- Affordances
 - Properties of an object (in relation to the action capabilities of an animal that enable specific actions for that animal).
 - Requires perceptual information.
- Effectivity
 - Action-relevant properties of the animal (that allow the animal to perform the action using the object).
 - Entails action units.
- Both are action relevant properties.

Calibration

- Targeted actions require units
 - Walking stride length
 - Reaching arm length
- Perceptual information must be mapped to action units.
 - The unit of visual distance information (e.g., eye-height, IPD) must be mapped to the unit of action (e.g., stride length, arm length).
- This mapping requires calibration because it can change (Bingham & Pagano, 1998).
 - Calibration is of a mapping from embodied units of perception to embodied units of action.

What is Reaches-to-Grasping?


- An extremely common action that you perform everyday, if not every waking hour.
- A rather complicated process that involves two goals:
 - Collision avoidance
 - One needs to open the aperture between finger(s) and thumb wide enough to avoid hitting the object with the fingers before they can encircle the object.
 - Targeting
 - Place the fingers and thumb accurately on specific object surfaces (Bootsma et al, 1994).
- There are also other variations of the task that yield task-specific variations in the timing structure of the movement.
 - Reach at a faster speed.
 - <u>Reach with a tool that enlarges/shrinks your grasp aperture and/or expands/shrinks</u> your reach distance.

Why do we care?

- It sheds light onto human movement control
 - Functional relationship between the properties of graspable objects and the timing of the movements.
 - Targeted reaching entails both feed-forward control and online visual guidance.
- It is a measure for 3D shape perception
 - You have to form your grasp aperture in accordance to the perceived size of the object to be grabbed.
- It is a measure for distance perception
 - You have to modulate when to reduce your grasp aperture and reaching speed to close in on the object to be grabbed (and avoid collision).

Measuring Reaches-to-Grasping

- What do we measure
 - Thumb
 - Index finger
 - Wrist
- What do we use
 - miniBIRD DC magnetic tracking (addresses the occlusion problem)
 - Alternatively, you can also use more advanced motion capture systems with active markers (e.g. OptiTrack, Vicon, Qualisys, etc.).

3D View

Top View

Frontal View

Pre-Reach

- Maximum grip, MG
 - The effective size of the actor's hand. Measured by having people picking up the longest rod they can using their thumb and index finger.
 - This should be measured *functionally*.

• Maximum object extent, MOE

- The maximum length diagonal through the object, equals to the Pythagorean of the object width and the length of the grasp surface.
- Available aperture, AA
 - = MG MOE

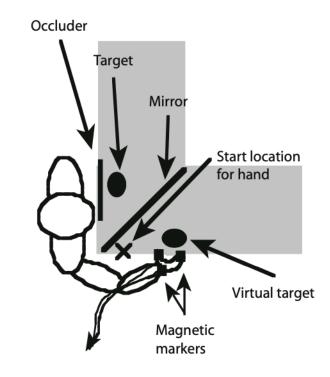
Mid-Reach

- Maximum grasp aperture, MGA
 - Occurs during the approach of the hand to the target object when the grasp aperture is the maximum.
 - Reflects the collision avoidance goal.
- Safety margin, SM
 - = MGA MOE

Stability Component

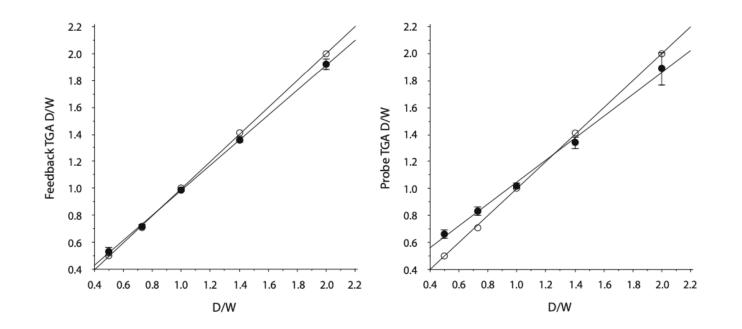
- Lateral position of MGA, MGA POS
 - The difference between the center of the object and the center of MGA.
 - A measure of the accuracy of the targeting portion of reach-to-grasp.
 - Computed as the distance from the center of MGA to the vertical plane formed between the midpoints of grasp aperture at the initiation of the reach and at the FGA.
- Safety margin's variability, SM SD
 - Reflects the variability of the grasping movement.
 - Computed as the standard deviation of SM for a given object.
- Total variability, **TV**
 - = SM SD + MGA POS

End-Reach

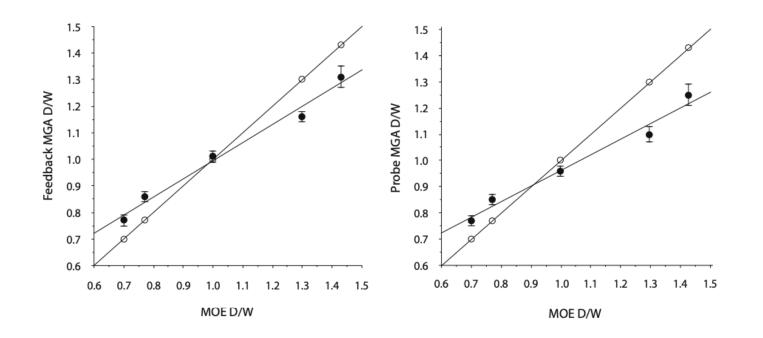

- Terminal grasp aperture, **TGA**
 - Occurs when the hand velocity drops to zero with the hand at the target object but prior to the fingers closing in on the object.
 - Occurs before FGA.
 - Computed as the distance between the fingers when the velocity of the wrist drops below 5 cm/s.
 - Reflects the targeting goal.
- Final grasp aperture, FGA
 - Occurs when the fingers (thumb and index finger) are in contact with the object to be grasped.
 - Occurs after TGA.
 - Computed as the distance between the fingers when the velocity of the index finger falls below 3 cm/s.

Time Components

- Movement time, MT
 - Time between the start (wrist velocity exceeds 5 cm/s) and the end (wrist velocity falls below 5 cm/s) of the reach.
- Time of MGA, TMGA
 - Time between the start of the reach and MGA, normed by MT.
- Time of peak velocity, TPV
 - Time between the start of the reach and when the wrist achieves maximum velocity, normed by MT.

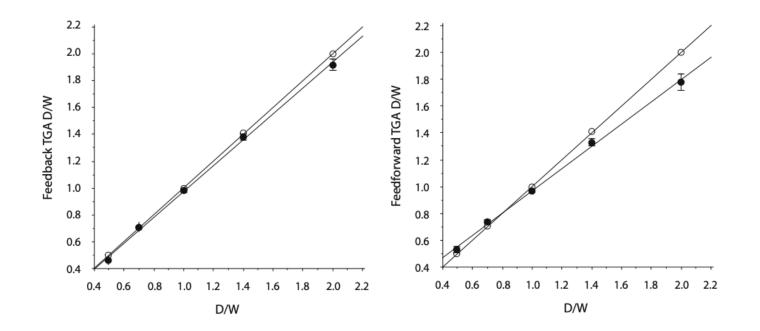

Calibration and 3D Shape Perception

- Trial types
 - (Haptic) feedback trials
 - Participants see and grasp an actual object.
 - They could not see their hands.
 - (Two identical objects required.)
 - Probe trials
 - Participants could only see and grasp the virtual target.
 - I.e., try to grasp the object that they see but cannot touch.
 - They could not see their hands.
- Grasping measures
 - First grasp object's width
 - Then grasp object's depth


Lee et al., 2008

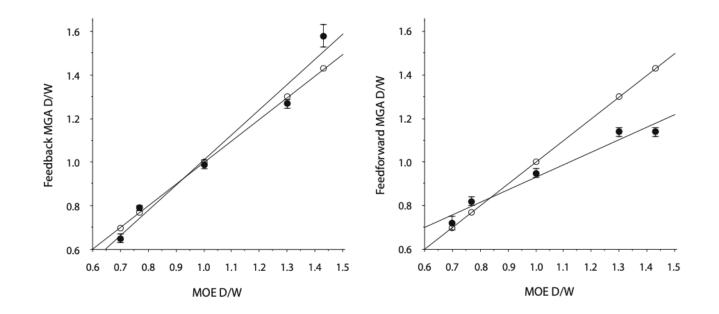
Haptic Feedback

Lee et al., 2008


Haptic Feedback

Lee et al., 2008

(Visual) Feedback vs Feedforward

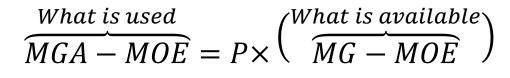

There is always haptic feedback.

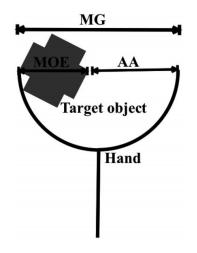
Lee et al., 2008

(Visual) Feedback vs Feedforward

There is always haptic feedback.

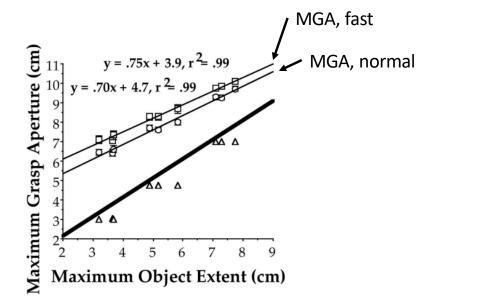
Lee et al., 2008

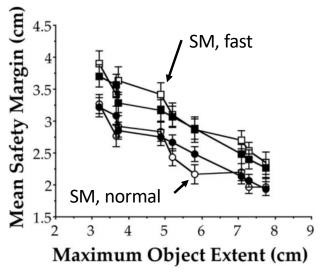

Invariance over Transformation


- Studying affordances and effectivity means to identify the invariant relationship between the environment and the animal.
 - Recall: Warren's stair-climbing and aperture-passing experiments
- Geometrical scaling vs. Dynamical Scaling
 - Geometrical scaling the invariant geometrical relationship between the organism and the environment (e.g., leg length and riser height).
 - Focuses on measurements such as length and width.
 - Dynamical scaling the invariant relationship between an actor's error tolerance and variability/stability of the action.
 - Focuses on measurements such as safety margin and standard deviation.

Geometrical Invariance

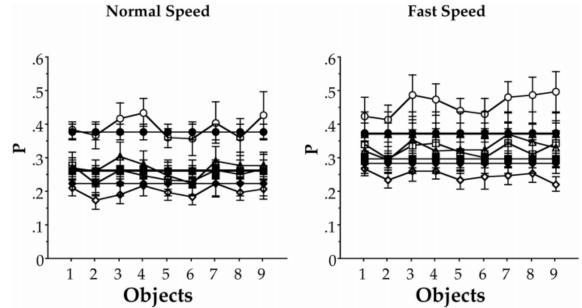
$$SM = P \times AA$$


Or



Bingham, Snapp-Childs, Fath, Pan, & Coats (2014)

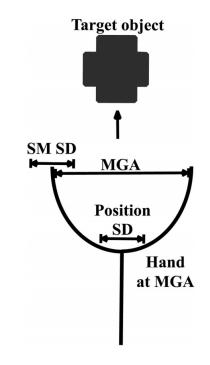
Geometrical Invariance



Bingham, Snapp-Childs, Fath, Pan, & Coats (2014)

Geometrical Invariance

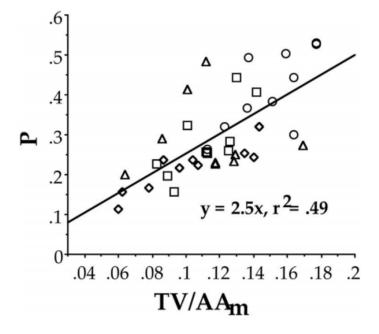
Open Symbols - Geometrical scaling Circle – small handed females Squares – large handed females Triangles – small handed males Diamonds – large handed males


Bingham, Snapp-Childs, Fath, Pan, & Coats (2014)

Dynamical Invariance

Action stability, measured using variability

$$P = \delta \times \frac{TV}{\overline{AA}}$$


Where δ scales the geometrical invariant to the dynamical invariant, representing **risk tolerance**.

Bingham, Snapp-Childs, Fath, Pan, & Coats (2014)

Dynamical Invariance

Circle – small handed females Squares – large handed females Triangles – small handed males Diamonds – large handed males

Bingham, Snapp-Childs, Fath, Pan, & Coats (2014)

What you should get out of this session

- What type of units do we need when we talk about perception-action coupling? Why do we need them? How do we connect them?
 - Units of visual perception (IPD, eye-height) and units of action (stride length, arm length).
 - We can describe perception and action based on their intrinsic measurement.
 - Calibration
- (What are the two types of scaling relationship in action analysis?)
 - (Geometrical and dynamical scaling)
- (What is one important lesson do we learn from the second type of scaling relationship?)
 - (When doing action analysis, always look at variability.)

See you during your presentation!

- Best of luck!
- And thank you for a great course!